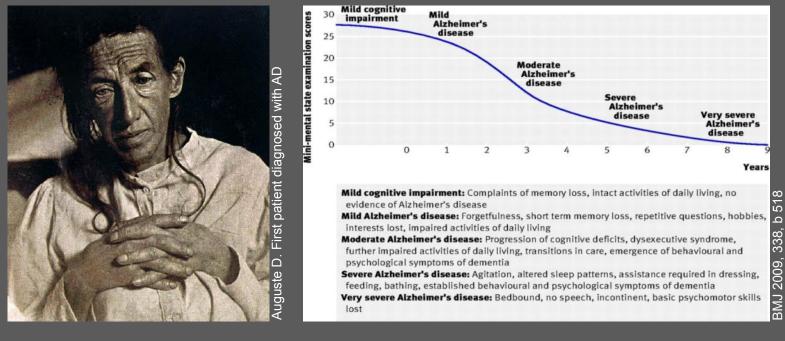


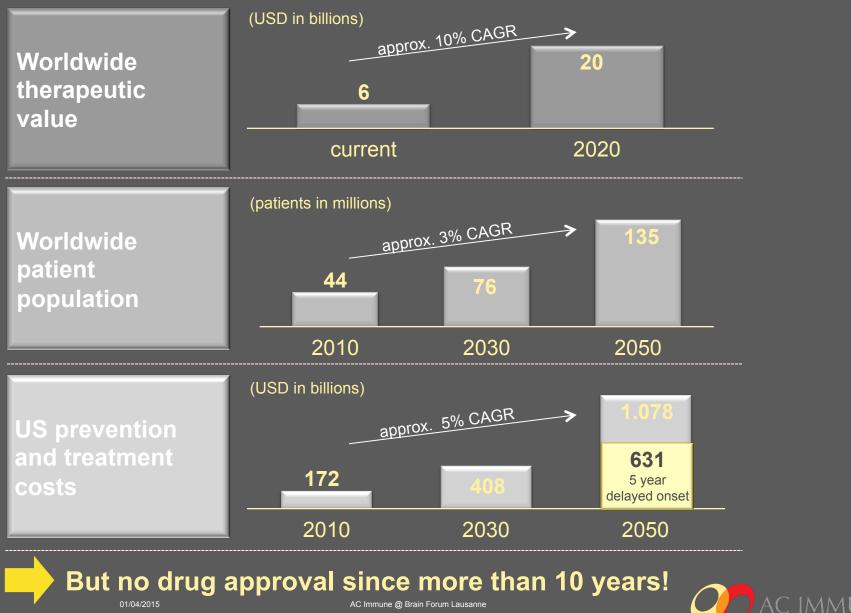
AC IMMUNE A leader in AD Drug Development

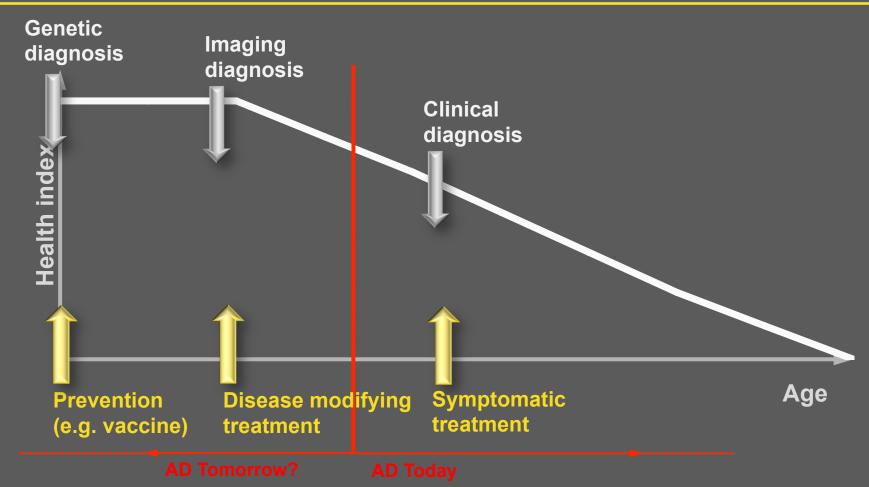
The Brain Forum 21st Century Challenge: Neurodegeneration


Prof. Andrea Pfeifer

Lausanne - April 1st, 2015

Alzheimer's disease Most common neurodegenerative disease

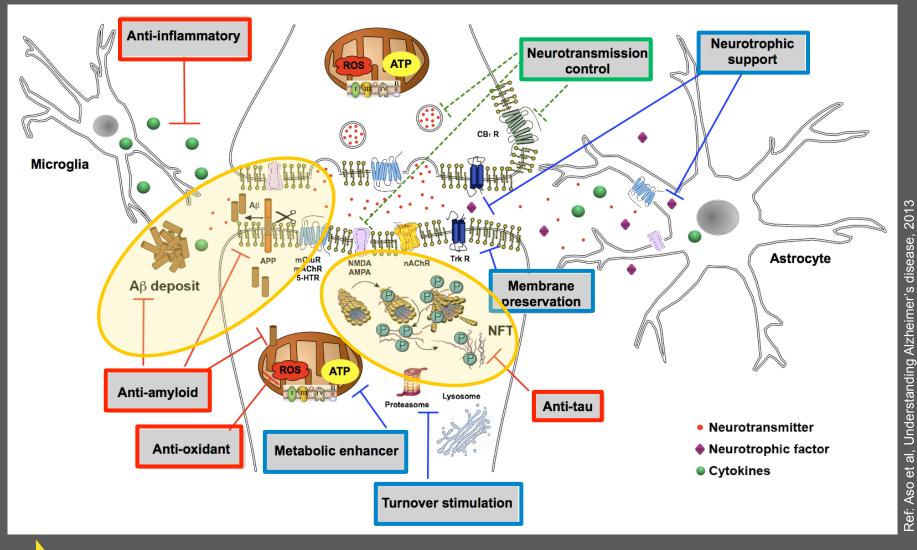

- Devastating, irreversible neurodegenerative disease
- Terrible human burden for patients and families
 - Progressive destruction of patient's memory and senses
 - Alteration and destruction of people's personality
 - Late stage patients need nursing care 24h per day
- Alzheimer accounts for approx. 70% of all forms of dementia (WHO)



01/04/2015

Alzheimer's disease Most significant Health Crisis of 21st Century

Alzheimer's disease - a large and growing market for efficient therapies and early diagnostics

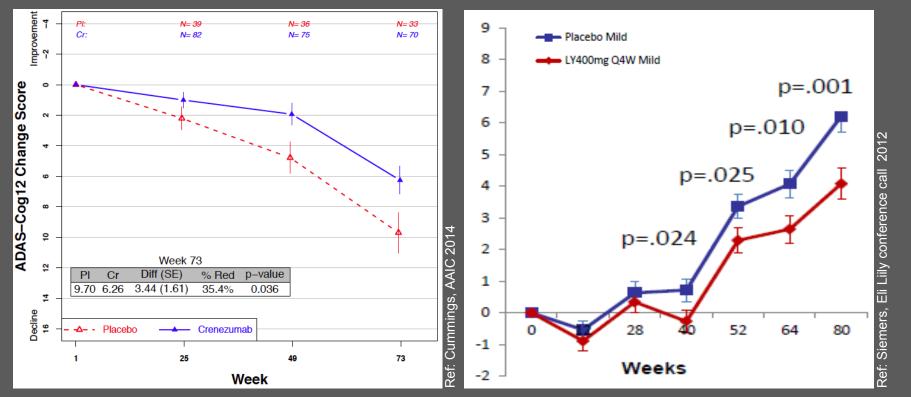

Early diagnosis translates into earlier treatment and better outcome

01/04/2015

AC Immune @ Brain Forum Lausanne

Alzheimer's disease Most promising targets for drug development

Clinical trials focus on Abeta and Tau



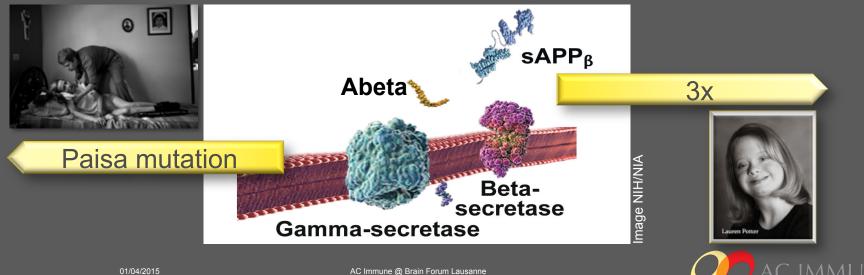
01/04/2015

Recent achievements in Alzheimer's disease Abeta pathway is confirmed

Slowing of cognitive decline is possible

Crenezumab ABBY phase 2 Change in ADAS-cog 12 in mild patients (MMSE 22-26) Solanezumab Expedition 1 and 2 phase 3 - pooled Change in ADAS-cog 14 in mild patients (MMSE 20-26)

Path to the future - Alzheimer's prevention Clinical trials in genetically defined populations

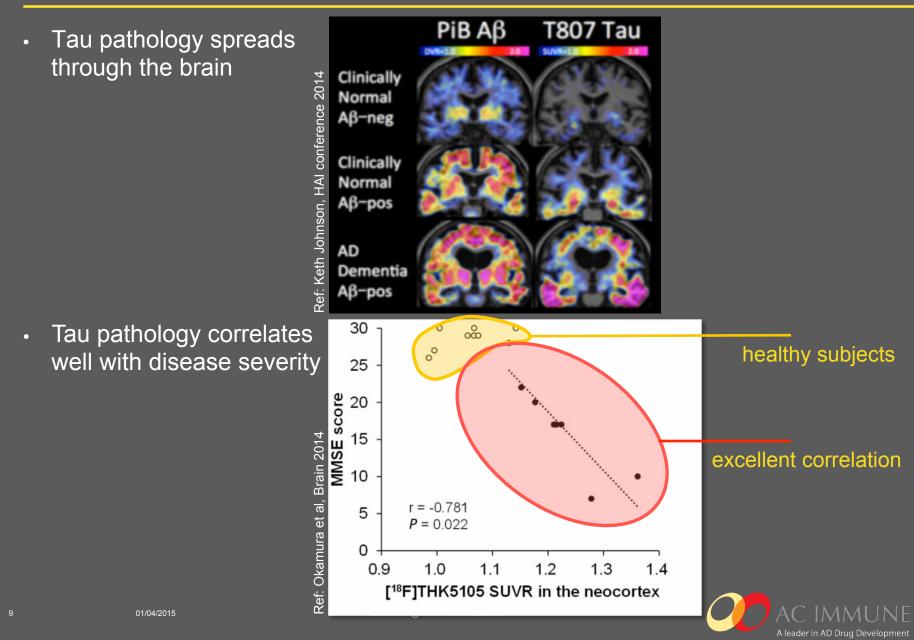

Protection from AD by Iceland gene mutation

A mutation in APP protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8}, Rvan J. Watts2 & Kari Stefansson1,8

Early onset Alzheimer's in people with genetic predisposition

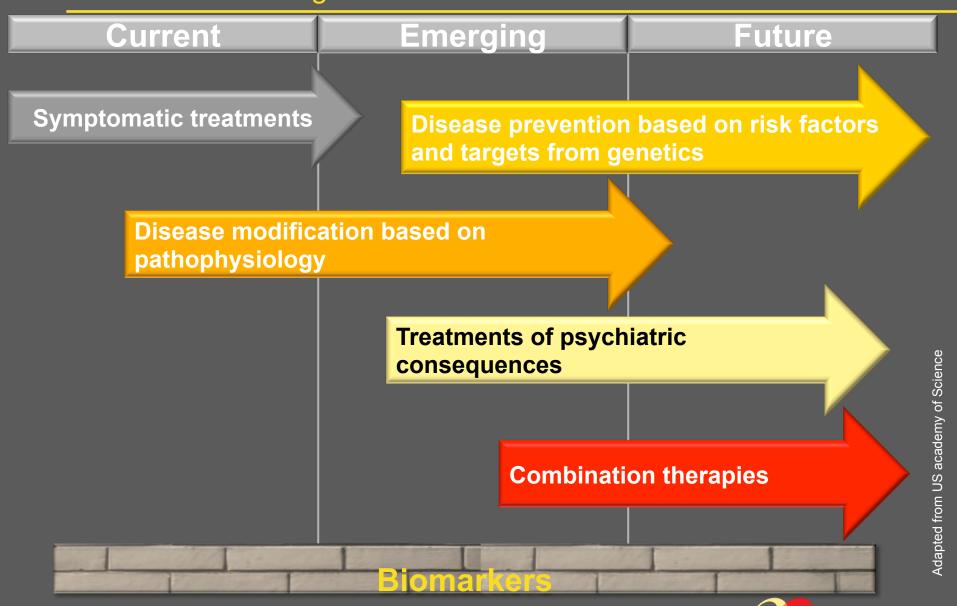
- Columbia family clan: Paisa mutation (E280A PS1) leads to Abeta • accumulation
- People with Down syndrome : Triple copy of APP gene leads to Abeta accumulation



Path to the future - Alzheimer's prevention AD prevention trials targeting Abeta pathway

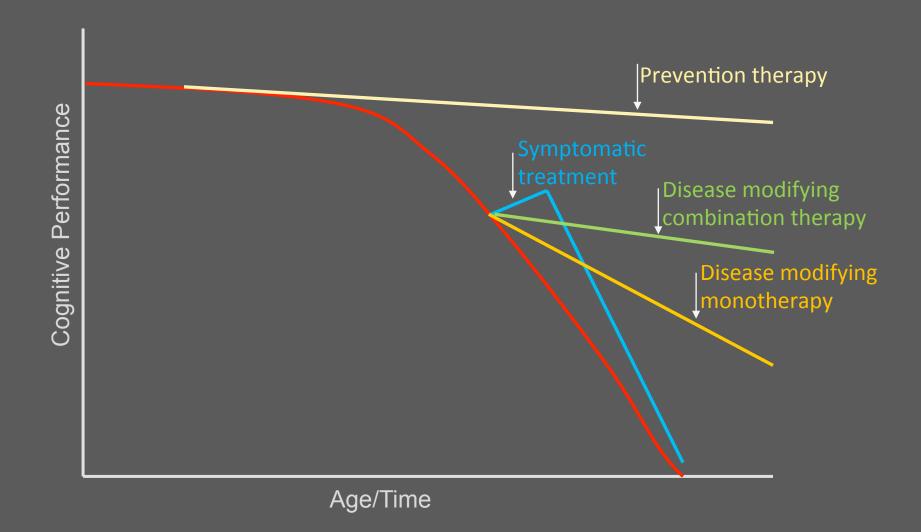
	API Trial	DIAN Trial	A4 Trial	API ApoE4 Trial
Study population	300 volunteers from kindred with PSEN1 mutation	240 volunteers from families with FAD mutation	1100 voluteers over 70 years old with amyloid in brain	1300 volunteers, age 60-75 with two copies of ApoE4
Expected time to onset	5 years	10-15 years	unknown	High probability to develop AD
Drugs tested	Crenezumab	Gantenerumab Solanezumab BACE - Inhibitor	Solanezumab	CAD106 BACE-inhibitor
Sponsor Consortium	NIH Banner AD Institute Genentech	NIA US-AD Association Roche Eli Lilly	NIH Private partnerships	NIH Banner AD Institute Novartis other foundations

A step closer to the future PET data confirm Tau as second important target


A step closer to the future First-anti Tau agents in clinical trials

TARGET TYPE	THERAPY TY	PE										
Target Types	Timeline	Phase 1/2	Phase 1	Phase 2	Phase 2/3	Phase 3	Phase 4	Approved	Inactive	Discontinued	Not Regulated	Total
Amyloid-Related	- F C	1	8	12	4	3	0	0	3	12	0	43
Tau	- F C	0	3	0	0	1	0	0	1	3	0	8
Cholinergic System	- F C	0		2	0	-	0	4	5	11	0	24
Other Neurotransmitters	₹.	0	0	6	0	2	1	1	2	11	0	23
Cholesterol		0	1	0	0	0	1	0	1	0	0	3
Inflammation	- F C	0	2	3	3	1	0	0	1	8	0	18
Metals		0	0	1	0	0	0	0	0	1	0	2
Other	- F C	0	2	23	2	4	3	0	4	8	0	46
Unknown		0	0	6	0	1	1	0	3	3	0	14

Ref: Alzforum, October 2014


Alzheimer's disease drug development Where we need to go

01/04/2015

c imm

Emerging strategies Combination therapy

Regulatory agencies are vital stakeholders Collaborative efforts to accelerate breaktrough therapies

- Support development and implementation of surrogate markers in clinical trials
- Allow early access to new medicines with highly positive Phase II/III results through conditional approval / adaptive licensing / Treatment IND
- Support approval of drugs based on a single (cognitive) endpoint in early disease
- Accelerate development of combination therapy through regulatory
 acceptance of appropriate preclinical and clinical safety data
- Encourage industry through longer market exclusivity
- Harmonize regulatory guidance for AD development

Key needs to find a cure for Alzheimer's before 2025

Partnerships between industry, universities, regulatory bodies, and other stakeholders and new financing models Focus on early stages of disease

2025

Abeta and Tau remain major targets – new targets and concepts need attention

Global registries, data sharing and analyses

01/04/2015

Different endpoints, tools and strategies for symptomatic and disease modifying treatments

combination therapy

Consideration of

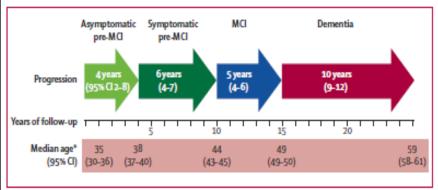
ļ.

William Utermohlen - artistic decline through Alzheimer's

"He died in 2007, but really he was dead long before that," Patricia Utermohlen, GV Art Gallery London, January 2012



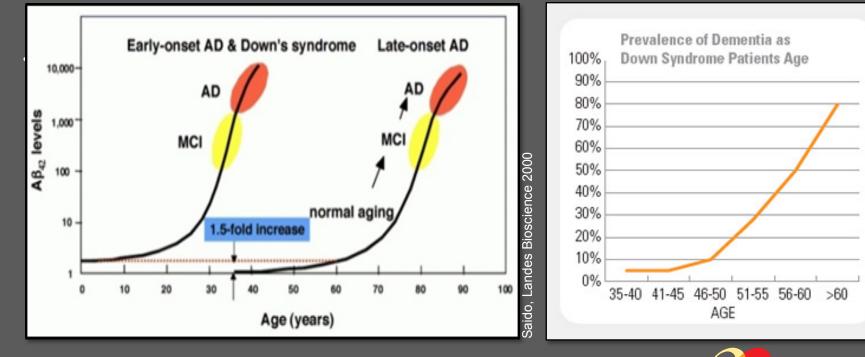
Path to the future – Alzheimer's prevention **API ADAD prevention trial**


Colombian family clan at the forefront of research

- Groundbreaking first ever prevention stuy in healthy individuals with genetic predisposition •
- Unique opportinity to study prevention and treatment in defined population
- Phase II study with 300 participants (200 mutation carriers/100 non-carriers, double-blind, placebo controlled)
- Private Public Partnership (NIH, Banner Alzheimer Institute, Genentech and AC Immune)
- Study start in December 2013

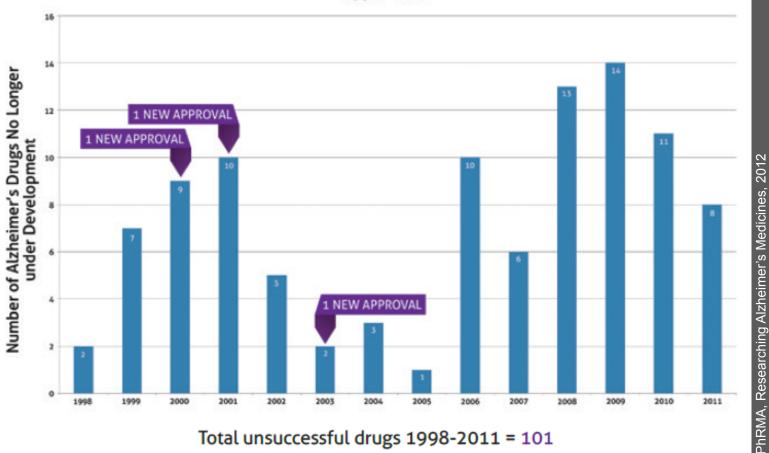
New York Times Alzheimer section

01/04/2015


Ref: Lancet Neurology Lacosta-Baena 2011

Path to the future - Alzheimer's Prevention Prevention trial in population with Down Syndrome

Down Syndrome People with genetic predisposition for Alzheimer's


- World first clinical trial for vaccine targeting Alzheimer's disease in people with Down Syndrome
- Clincial study, placebo controlled, double blind
- Private public partnership (AC Immune, University of San Diego's Down Syndrome Center for Research and Treatment, NIH, LuMind Foundation and Research Down Syndrome)

Alzheimer's disease History of failure in drug development

No new drug approved since more than 10 year's

Unsuccessful Alzheimer's Drugs in Development

AC Immune @ Brain Forum Lausanne

01/04/2015

Path to the future - Alzheimer's Prevention API ADAD prevention trial

Clinical trial	 Groundbreaking first everAD prevention trial in cognitively healthy individuals who will develop AD because of their genetic predisposition Test the amyloid hypothesis Phase II study of 300 subjects
Study partners	 Banner Alzheimer Institute, Arizona USA US National Institutes of Health (NIH) University of Antiochia, Colombia Genentech – developer of Crenezumab AC Immune – discoverer of Crenezumab
Participant characteristics	 30 years and older being in preclinical phase of AD No cognitive impairment
Study objectives	 Efficacy (API composite cognitive test battery), Safety and tolerability and biomarkers Time to onset of Alzheimer's disease
Study timeline	 First patients received dose in Dec. 2013 Interim analysis after 2 years of treatment 2020: Study completion

Path to the future - Alzheimer's Prevention Prevention trial in population with Down Syndrome

Study description	 World first clinical trial for vaccine targeting Alzheimer's disease in people with Down syndrome Test the Abeta hypothesis Clinical study, double blind, placebo-controlled
Study partners	 AC Immune University of San Diego's Down Syndrome Center for Research and Treatment US National Institutes of Health (NIH) LuMind Foundation and Research Down Syndrome
Participant characteristics	 35-45 years old people with Down syndrome
Study objectives	 Safety and tolerability Effect on induction of anti-Abeta antibodies Clinical and cognitive measures Biomarkers to study Abeta brain and CSF load
Study timeline	 Recruitment of patients planned to start 2015 6 months treatment + 12 months safety follow up

AC Immune @ Brain Forum Lausanne

Emerging strategies New hot targets

- Neuroinflammation
- Mitochondrial dysfunctions
- Epigenetics: HDAC inhibitors, miRNA modulators
- Neurogenesis
- Stem cells
- Neurotrophins
- Endoplasmatic reticulum stress
- Unfolded protein response
- Cell cycle dysfunctions

