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Science was observational

‘“ A..&
* Galileo, Newton and the birth of modern
science: c. 1600

* Problem: single “particle” (apple) in
gravitational field (General two-body problem
already too hard)

 Methods
, — Data: notebooks (Kbytes)
f/ — Theory: driven by data

— Computation: calculus by hand (1 Flop/s)
e Collaboration
— 1 brilliant scientist, 1-2 students
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Genome Sequencing: Understandlng the life functions at the YA E
level through molecular profiling and relating the molecular
information with phenotypic data. Data generated by high throughput

device (e.g. NGS machine) : 1TB/day for one machine, 1 Lab: 20-100
machines, global collaboration

™.

Connectome: Mapping the connectome at the micrometer resolution
means building a complete map of the neural systems, neuron-by-
neuron. The human cerebral cortex alone contains on the order of
10%° neurons linked by 10'*synaptic connections. By comparison, the
number of base-pairs in a human genome is 3x10° In 2012, a Citizen
science project called began attempting to crowdsourcing the
mapping of the connectome through an interactive game
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http://en.wikipedia.org/wiki/EyeWire

Datafication: Data Science as the Glue for Multidisciplinary Research
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Compass, HVAC position
sunroof, wipers

Trunk / door lock
switches, electric
windows

Engineering

Throttle, EGR
valve position

Cam/crankshaft position
engine speed

Throttle by wire
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Wheel speed
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Brushless DC
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motors, |
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cooling fan pedal position
coolant level
Current sensors for HEV battery

Transmission management, wing mirror
gear position, position, steering wheel angle
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Starter / Alternator,
stop/start systems
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http://www1.imperial.ac.uk/medicine/research/researchthemes/cardio_science/
http://www1.imperial.ac.uk/medicine/research/researchthemes/imaging/
http://www1.imperial.ac.uk/medicine/research/researchthemes/infection/
http://www1.imperial.ac.uk/medicine/research/researchthemes/neuroscience/
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Data Driven Brain Research

Empirical functional
connectivity

Model
functional
connectivity

Empirical Resting.
Correlation of BOLD signals

DTI/Tractography Parcellation

Structural
connectivity

Deco, Gustavo, et al. "Resting-state functional connectivity emerges from structurally and dynamically shaped slow
linear fluctuations." The Journal of Neuroscience 33.27 (2013): 11239-11252.



fMRI Analysis

A B
Univariate Multivariate
[l Condition A activation activation
B Condition B
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across events within condition vaxels within each event
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Activity-based analyses

Resting
connectivity

L Y

Temporal correlation between a
seed voxel and all other voxals

D
Task-based
connectivity
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Correlation between seed and
other voxels within condtion

E
Full (resting)
connectivity

Correiation of all possible
seed voxels with each other
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Correlation-based analyses

Small Data

Big Data

Turk-Browne, Nicholas B. "Functional Interactions as Big Data in the Human Brain." science 342.6158 (2013): 580-584.



Single Voxel : Small Data Analysis
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MVPA: Big data approach for brain analysis
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Haxby, James V., et al. "Distributed and overlapping representations of faces and objects in ventral temporal
cortex." Science 293.5539 (2001): 2425-2430.



SEY ing

e [Encodin
e Detect vpxels that correlate
tp the sti

*Find multiple voxels to
ecode(predict) the stimulus



MVPA Algorithm

(a) Feature

Categories selection
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THRENDS jn Cognitive Scrences

Norman, Kenneth A., et al. "Beyond mind-reading: multi-voxel pattern analysis of fMRI data." Trends in cognitive
sciences 10.9 (2006): 424-430.



Linear Sparse Model for MVPA

Design Matrix x Coefficients w Stimuli(Observations) y
(weights of voxels) '

N samples

Relevant patterns = K non-
zeros coefficients < the
number of brain f res M

Why use Linear Sparse Model?

The number of patterns related to the stimuli is always far less than the number of
brain features

The prediction model constructed by the sparse coefficients does not easy to overfit
the training data




Lasso for Feature Selection

Class label Input features Feature strength

m
E -

I Lasso Penalty

B for sparsity

ﬁ*=argm§n(y—Xﬁ)T(y—X5) . A 18]

Many zero strengths (sparse results), but what
if the features are correlated?



Multi-task Feature Selection

Multi-Class label

(0/1, ‘b/l, 0, 0/1)
C—)

human

Input features

|

Feature strength

—
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predicative strength
between
feature j and label i: f3;

5*:argm§n(y—Xﬁ)T(y—X5) . A 18]

We introduce
Structured L1/L2 norm
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Connectivity

structural connectivity functional commectivity effective connectivity

Anatomical/structural connectivity presence of axonal connections

Functional connectivity  statistical dependencies between regional time series

(Descriptive in nature; establishing whether correlation between areas is significant

Effective connectivity causal/directed influences between neurons or populations

(Model-based; analysed through model comparison or optimisation)

Sporns, Olaf. "Brain connectivity." Scholarpedia 2.10 (2007): 4695.



Learning Functional Connectivity
N\ -




Full correlation matrix analysis: voxel
level (active tasks)

A Cognitive Condition A Condition B Condition A Condition B
task

(A) An fMRI data set is divided into time
windows, which are labeled with an
experimental condition.

(B) Each window contains multiple time
points, and each time point corresponds
to a 3-D brain image.

(C) The time course of BOLD activity in
every voxel is correlated with every

Activation
images

Full
correlation

Daa Tanng || Tem other voxel to produce a full correlation
- 4 matrix for each window.
selection | “Siaisics, oic. (D) An example matrix from a 36-s block
- ﬁ?:%%% of fMRI data is depicted with 39,038
I voxels arranged in a circle and 0.01% of
i |02 ©| Fm correlations of >0.3 plotted as links.
e (E) These matrices can be submitted as
cpten ) :
s woboiten ikt B 1) examples to MVPA, with each voxel pair

as an input dimension.

Turk-Browne, Nicholas B. "Functional Interactions as Big Data in the Human Brain." science 342.6158 (2013): 580-584.



A translational view of research in

Microbiome

brain disease
‘ Syndrome

g Symptom/Traits

Envirome

Cellular Systems/

Signaling Pathways

Internal Mind

Proteome/

Metabolome

Genome




Combining knowledge of neuroscience and big data
facilitates understanding of human behaviour

Simple & Mobile
Neuro- & daily-life activitie
measuring system

l'"v ; )T"
Collection of activity
in daily life

Unconstralnt conditions

Non-invasive
measuring system.
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Highly Constraint
conditions



eTRIKS: European translational informatics

platform and service

« A€23.79m for 5 years (Oct 2012---Sept 2017) project for building a
platform to support translational research

« Support €2 billion IMI projects in translation medicine study

« |Imperial College leads with 3 major partners and 10
pharmaceutical companies

Tissue
Microarray
Genotype
bedside to bench Labs
Form Data
research data
LS

knowiedge discovery

\ﬁ,

SAS
Administrative R
Billing / Finance
Physician Orders
Medications
Labs

Dictation Text
PACS Images

BioCondcutor
GeWorkbench
Spotfire

Discoverer

OLAP

Data Mining

UMLS Concept Mining
Virtual Microscope

eJep [ealuld

analysis

—I clinical trials g

eeeeeeeeeeeeeeeee Clinical Data test new knowledge
getop Labs 9

Billing
Form Data adapted from S. Murphy, Partners center, Boston




eTRIKS platform for brain disease
translational research
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OPTIMISE: stratified therapy in

multiple sclerosis

Recruitment

Patient Identification

& Consent

Patient identified relapses

e “Clinical episode” N
30min Blood / Urine l > BioBank I
Research '
Vital measurements : .
Biomarkers
. \ MSFC (T25FW, 9-Hole peg, -
LCVA)
SDMT
eCRF CRO
S Clinical measures -nL
o e 30min Socio-demographic
n e
511 S Co-morbidities
a \\ EDSS /
T2 VIR
60min 3D T1 - volumetric
MRI —>| \TR p
(DIR) PRO
Cognition (PROMIS), !
Patient 20min Limb function (NeuroQol) E-mail / Central
atien Quality of Life (MSI5-29v2) App-based co-ordination



Impact of neuroscience to data science

Brain function
measurement

Generates
big data

Provides
stimulus set

Non-invasive
measuring systems

brain network

Information Network
Interpretation  Sensor Network

of big data

Generates
human

behaviour data
Complex

network science

Analysis of network
topologies



Cognitive sensing

* Applying cognitive science to
computer sensing system (Brain
as prediction machine ->
Intelligent Sensing)

Enabling the sensing system certain state of ‘consciousness’.
Make the system more adaptive (to resist a natural tendency to disorder).

Make the system more intelligent (to gain wanted knowledge from multifarious
target).

Make the system more resource optimised (to balance the approximation and
local accuracy).



Bayesian brain and surprise

Attention and biased competition

Computational motor control

an-0,4% The free-energy principle: an

Minimization of sensory

filitan: orors information theory measure
that bounds or limits the

fi, = arg min _}'arF
Optimization of synaptic gain
representing the precision
[salience) of predictions

Predictive coding and hierarchical inference

Associative plasticity ¥ = Dt ?f" TEW L g PN
- Minimizati dicti N - : .
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Cptimization of synaptic efficacy a, i = arg max V' (§|m]

The Bayesian brain hypothesis
= arg min D, [q(#) |:|'-'-‘|:9 H

data, given a generative
model.

Perceptual learning and memory

fig = arg min _FarF
recognition density and the conditional

Dptimization of synaptic efficacy density on sensary causes

to represent causal structure
in the sensorium

a
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long-term average of surprise to ensure N apome . Friston, Karl. "The free-energy
. . = — principle: a unified brain

that their sensory entropy remains low. sint g nehiin | theory?." Nature Reviews

Neuroscience 11.2 (2010): 127-138.




Cognitive sensing design
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o . Conclusion
-ing -* Small brain is the best place for big

\ data research

* Big data research is the key to demystify
small brains

 We are in the beginning of innovations for
brain research and neuro-technology

e Data science plays the key role in these
endeavours




