Real-Time fMRI Neurofeedback

Nikolaus Weiskopf

Department of Neurophysics,

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Overview

- Real-Time fMRI (rtfMRI) and Neurofeedback
- A Typical Neurofeedback Experiment
- Changing the Brain and Behavior
- Conclusion

Overview

- Real-Time fMRI (rtfMRI) and Neurofeedback
- A Typical Neurofeedback Experiment
- Changing the Brain and Behavior
- Conclusion

Functional Neuroimaging and fMRI

Raichle, TINS 2009, reviewing Petersen et al., Nature 1988

В Motor Response Time Course rest stim rest stim Signal Intensity 2130 2070 2010 0 64 128 192 256 Seconds

Kwong et al., PNAS 1992

Functional Neuroimaging and fMRI

Raichle, TINS 2009, reviewing Petersen et al., Nature 1988

Yacoub et al., PNAS 2008

В Motor Response Time Course stim rest rest stim Intensity 2130 Signal 2070 2010 0 64 128 192 256 Seconds

Kwong et al., PNAS 1992

Now: > 10 x faster and higher resolution

Neurofeedback: Experimental Setup

Processing time < Data acquistion time

Cox et al., Magn. Reson. Med. 1995

SPM Central (http://www.fil.ion.ucl.ac.uk/spm)

Rapid Mapping of Visual Areas: Fusiform Face Area (FFA) and Parahippocampal Place Area (PPA)

6	NK_FFA_PPA			· · · · · · · · · · · · · · · · · · ·				
	File Analysis View Multi-Run Help				Contrast	> < Color		
		Reload Data Au	uto-Advance	Auto-Start				
		<u> </u>						
	N							
	42							
					Current settings file: "NK_FFA_PPA_TAL	-1.tbv'.		
					Click the "Record button to start process	ing.		

Courtesy: Goebel, Maastricht

Speller: Decoding of Brain Activity Patterns

Sorger et al., Current Biology 2012

Neurofeedback: Closing the Loop

Neurofeedback: Closing the Loop

Painful electric stimulus

ACC BOLD activity is increased

Davis et al., J Neurophys 1997

Neurofeedback: Swapping the Variables

Pain rating changes

ACC BOLD activity is increased

deCharms et al., PNAS 2005

Neurofeedback: Swapping the Variables

Pain rating changes

Sources: Wassermann, T. Brain Stim.; T. Varco

Overview

- Real-Time fMRI (rtfMRI) and Neurofeedback
- A Typical Neurofeedback Experiment
- Changing the Brain and Behavior
- Conclusion

Target Areas for Self-Regulation: Supplementary Motor Area (SMA) and Parahippocampal Place Area (PPA)

- Functional role
 - **SMA:** movement, motor imagery
 - PPA: views of scenes, navigation, memory
- Functional localizers
 - SMA: bimanual finger opposition
 - **PPA:** images of faces/houses

Weiskopf et al., IEEE TBME 2004; Scharnowski et al., Biol. Psychol. 2015

Differential & Bidirectional Regulation: SMA/PPA

Experimenter's screen

File Andredware Certers: Image: Aller Aller Image: Alle

Feedback screen

Learning of Self-Regulation: SMA/PPA

Improved Memory Encoding: SMA/PPA

- Self-regulation without feedback
- Visual presentation of words
 (6 words + pseudo-word / block)
- Unexpected memory test

Scharnowski et al., Biol. Psychol. 2015

Improved Memory Encoding: SMA/PPA

- Self-regulation without feedback
- Visual presentation of words (6 words + pseudo-word / block)
- Unexpected memory test

Recognition Test

•BALL	•sure	∙unsure	•new
•ECHO	•sure	•unsure	∙new

Scharnowski et al., Biol. Psychol. 2015

Overview

- Real-Time fMRI (rtfMRI) and Neurofeedback
- A Typical Neurofeedback Experiment
- Changing the Brain and Behavior
- Conclusion

Training of Visual Cortex: Improved Perception

Scharnowski et al., J Neurosc 2012

Training of Visual Cortex: Improved Perception

VS.

Behavior follows BOLD.

This **improvement was specific**

to the visual field corresponding to the self-regulated ROI, i.e. no improvements were found for the ipsilateral visual field.

Scharnowski et al., J Neurosc 2012

Training of Activity Pattern in Depression

Self-regulation performance

Linden et al., PLoS One 2012

Pre-SMA Training in Huntington's Disease

Pre-SMA Training in Huntington's Disease

Stronger connectivity in motor network: Putamen-Target ROI

0.3 Éoméposite Scome 2 Hchamiger 2 - Composite Scores VBM: Grey Matter change in LH pre-SMA -0.015 0.015 PPI/Connectivity -6

Papoutsi et al., in preparation

Anatomical changes in left pre-SMA

Overview

- Real-Time fMRI (rtfMRI) and Neurofeedback
- A Typical Neurofeedback Experiment
- Changing the Brain and Behavior
- Conclusion

Conclusion

- rtfMRI provides information about current brain/BOLD activity
- Neurofeedback enables self-regulation of specific brain areas
- Specific behavioral effects due to self-regulation

For reviews: Sulzer et al., Neuroimage 2013; Weiskopf et al., Neuroimage 2012

What is Next?

- Neuroscience
 - How are learning and self-regulation mediated?
 - What are the anatomical and physiological consequences?
- Clinical
 - What are the best targets and experimental designs?
 - Ongoing clinical trials in movement disorders and mental disorders
- Technology
 - Fast reliable feedback: ultrafast fMRI, prospective motion correction
 - Networks and connectivity
 - Multi-modal approaches

PMC off

Thank you

Neurophysics @ MPI-CBS

M. Papoutsi, G. Rees, S. Tabrizi (UCL)
R. Goebel, B. Sorger (Maastricht)
F. Scharnowski (Zuerich)
N. Birbaumer, R. Veit (Tuebingen)
C. Hutton (Siemens UK)
K. Mathiak (Aachen)
M. Zaitsev, M. Herbst (Freiburg)

wellcome^{trust}

Supported by MPG, EU FP7, MRC DPFS, ERC, MPG, UCL, Horizon 2020, Siemens, Wellcome Trust

European Research Council Established by the European Commission

End of Presentation